TEBOFLAM · REF 25-VI-GB · Cancels and supersedes any previous versions

Internal fittings in public access buildings. All constructions subject to specific fire regulations.

Groupe THEBAULT 47, rue des Fontenelles - 79 460 MAGNE - France Tél : +33 (0)5 49 35 70 20 info@groupe-thebault.com

www.groupe-thebault.com

Base board: Okoume throughout fire-retardant Plywood Faces (IAW EN 635-2): II / III

Finishing: sanded 2 sides

DESCRIPTION

Average density (IAW EN 323): 500 kg/m³ (+/- 10%) Bonding (IAW EN 314-2): class 3 Service (IAW EN 636): class 3 exterior conditions

Formaldehyde release classification (IAW EN 717-1): E0.5 (≤ 0,062 mg/m³) Content of Pentachlorophenol (IAW EN 13986): PCP ≈ 0 ppm

SIZES, NUMBER OF PLIES & PACKAGING

Thicknesses (mm)	Number of plies	Sizes (mm)	Packing
5	(3)		45
9	(5)		50
10	(5)		45
12	(5)	2500 x 1220	37
15	(7)	_	30
18	(9)	3100 x 1530	25
22	(11)		20
25	(11)		18
30	(13)		15

Other sizes & thicknesses: on request

OPTIONS

Cutting & TG processing: optional on request

STORAGE

Flat, on intermediate bearers, in an enclosed dry and ventilated building, clear of the ground. As far as storage on site is concerned, provision should be made to cover the panels with an opaque waterproof sheeting with the underside of the stacks clear of the ground.

FURTHER PROCESSING & INSTALLATION

Compliance with standard practice, with regulations and with health and safety rules should be maintained at all times.

Cutting and machining in the workshop possible except laser technology.

PRODUCTION SITES Production on Thébault's sites in France

TEBOFLAM

ш

ш

I

 \bigcirc

DATA

H N I C A L

Ш

HEBAULT

TECHNICAL PROPERTIES

Characterist														
			5	9	10	12	15	_	18	22		25	30	
Modulus of elasticity (E _m)		//	6318	6940	6170	5692	5456	4	940	4650	5	042	4962	
	_ _	2932	4356	5580	6058	6294	6	810	7100	6	708	6788		
Bending strength (f _m)	//	40,5	30,6	34,4	31,7	30,4	2	27,5	25,9	2	28,1	27,7		
)	_ _	26,4	24,3	31,1	33,8	35,1		38	39,6	3	37,4	37,8	
Others chai valu			٢	Strengt 10dulus of ela:	Available on DOP Strength in: Tension (f,), Compression (f,), Panel shear (f,) and Planar shear(f,) s of elasticity in: Tension (E,), Compression (E,), Panel shear (G,) and planar shear (G,)									
Jses														
	structural a 986, EN 636- 636-1)					use as structu Iditions (servic								
Nail and scr	ew holding	g (t = 15	mm)		В	ending radi	ius (mm)							
Nail			Face and e	edge: 300 N		Thickness	ses	5	8	10	12	15	18	
			Face	-	-	//	10	000	1600	2000	2400	3000	380	
Screw				Edge	-	_l_	10	000	1600	2000	2400	3000	380	
			1050 N	1200 N										
ire reaction	า													
	Mounting	on a stru	cture at least	t rated D in fire	e reaction clas	sification, e.g.	timber or st	eel struc	cture					
				t rated D in fire		sification, e.g.	timber or st	eel struc	cture					
haracterist	Flooring a				1	-								
	Flooring a		n correspor	idence : Dfl-s	1	sification, e.g. ound absor				Fre	equency	range		
Characterist	Flooring a			idence : Dfl-s	1	ound absor	ption coe EN 13986		t	Fre Hz to 500		range 1000 Hz àto	2000 H	
IAW EN	Flooring a tic density		n correspor	idence : Dfl-s	1	ound absor	ption coe		t			-		
IAW EN	Flooring a tic density 789 meability	pplicatio	n correspor	idence : Dfl-s	S	ound absor IAW Tat	P tion coe EN 13986 ble №10		t	Hz to 500		1000 Hz àto		
IAW EN	Flooring a tic density 789 meability 13986	pplicatio We	n correspor 430 kg/ t cup	idence : Dfl-s ⁻ im ³ Dry cup	S	ound absor IAW Tal	Ption coe EN 13986 ble №10		t	Hz to 500	Hz	0,3000 Hz àto		
IAW EN /apour perr IAW EN	Flooring a tic density 789 meability 13986	pplicatio We	n correspor 430 kg/	i dence : Dfl-s' 'm³	S	ound absor IAW Tal	P tion coe EN 13986 ble №10		t	Hz to 500		0,3000 Hz àto		
IAW EN Vapour perr IAW EN Table	Flooring a tic density 789 meability 13986 e 9	pplicatio We	n correspor 430 kg/ t cup	idence : Dfl-s ⁻ im ³ Dry cup	S	ound absor IAW Tal	Ption coe EN 13986 ble №10		t	Hz to 500	Hz	1000 Hz àto 0,30		
IAW EN /apour perr IAW EN Table	Flooring a cic density 789 meability 13986 e 9 md absorp 13986	pplicatio We 70	n correspor 430 kg/ t cup D μ	i dence : Dfl-s ² m ³ Dry cup 200 μ ission loss R c	s single wood following equal to the second	ound absor IAW Tał Thermal con IAW	Ption coe EN 13986 ble N°10 Iductivity EN 13986 el, measured only valid fo	fficient in dB, is	t 250	Hz to 500 0,10 the mean range of 1 k	Hz $λ = 0,1$	1000 Hz àto 0,30 3 nass m _A en)	
IAW EN Vapour perr IAW EN Table Airbone sou IAW EN Paragrap	Flooring a Flooring a 1789 meability 13986 e 9 mnd absorp 13986 oh 5.10	pplicatio We 70 tion The s	n correspor 430 kg/ t cup D μ O μ ound transm acco	i dence : Dfl-s ² m ³ Dry cup 200 μ ission loss R c ording to the f	s single wood of a single wood of a single wood and at a single wood of the single wood o	ound absor IAW Tal 'hermal con IAW id-based pane tion (which is o	Ption coe EN 13986 ble N°10 Iductivity EN 13986 el, measured only valid fo	fficient in dB, is	t 250	Hz to 500 0,10 the mean range of 1 k	Hz $λ = 0,1$	1000 Hz àto 0,30 3 nass m _A en)	
IAW EN Vapour perr IAW EN Table Airbone sou IAW EN Paragrap	Flooring a Flooring a 1789 meability 13986 e 9 mnd absorp 13986 oh 5.10	pplicatio We 70 tion The s	n correspor 430 kg/ t cup D μ O μ ound transm acco	i dence : Dfl-s ² m ³ Dry cup 200 μ ission loss R c ording to the f	s single wood of a single wood of a single wood and at a single wood of the single wood o	ound absor IAW Tal 'hermal con IAW id-based pane tion (which is o	Ption coe EN 13986 ble N°10 Iductivity EN 13986 el, measured only valid fo	fficient in dB, is	t 250	Hz to 500 0,10 the mean range of 1 k	Hz $λ = 0,1$	1000 Hz àto 0,30 3 nass m _A en	D	
IAW EN Vapour perr IAW EN Table Airbone sou IAW EN Paragrap	Flooring a Flooring a 1789 meability 13986 e 9 13986 ph 5.10	pplicatio	n correspor 430 kg/ t cup D µ ound transm acco	i dence : Dfl-s ² m ³ Dry cup 200 μ ission loss R c ording to the f	T T T T ON ON	ound absor IAW Tal 'hermal con IAW id-based pane tion (which is o	Ption coe EN 13986 ble №10 nductivity EN 13986 el, measured only valid fc 5 kg/m ²): R	fficient in dB, is or the fre = 13 × lg	t 250 s related quency r (m _A) + 12	Hz to 500 0,10 the mean range of 1 k 4	h = 0,1 surface r (Hz to 3 l 6-3 1 E1	1000 Hz àto 0,30 3 nass m _A en <hz< td=""><td>)</td></hz<>)	
IAW EN Japour perr IAW EN Table Airbone sou IAW EN Paragrap	Flooring a Flooring a 1789 meability 13986 e 9 13986 ph 5.10	pplicatio	n correspor 430 kg/ t cup D µ ound transm acco	i dence : Dfl-s ² m ³ Dry cup 200 μ ission loss R c ording to the f	T T T T ON ON	ound absor IAW Tal Thermal con IAW Id-based pane tion (which is o urface mass >	Ption coe EN 13986 ble №10 nductivity EN 13986 el, measured only valid fc 5 kg/m ²): R	fficient in dB, is or the fre = 13 × lg	t 250 s related quency r (m _A) + 12	Hz to 500 0,10 the mean range of 1 k 4	h = 0,1 surface r (Hz to 3 l 6-3 1 E1	1000 Hz àto 0,30 3 nass m _A en <hz< td=""><td>)</td></hz<>)	
IAW EN Japour perr IAW EN Table Airbone sou IAW EN Paragrap	Flooring a Flooring a 1789 meability 13986 e 9 13986 oh 5.10 AL SUIT, e attestation	pplicatio	n correspor 430 kg/ t cup D µ ound transm acco	i dence : Dfl-s ² im ³ Dry cup 200 μ ission loss R c ording to the f	T S S S S S S S S S S S S S	ound absor IAW Tal Ihermal con IAW Id-based pane tion (which is o urface mass >	Ption coe EN 13986 ble №10 nductivity EN 13986 el, measured only valid fo 5 kg/m ²): R R - EN 13980 n of Perform	fficient in dB, is or the fre = 13 × lg	t 250 s related quency r (m _A) + 12 + A1 : 20 silable on	Hz to 500 0,10 the mean range of 1 k 4 n15 - EN 63 www.group	λ = 0,1 surface r (Hz to 3 l 6-3 1 E1 be-thebau	1000 Hz àto 0,30 3 nass m _A en KHz ult.com	of volat	
Vapour perr IAW EN Table Airbone sou IAW EN Paragrap TECHNIC, CE Structure NF Extér	Flooring a Flooring a meability 13986 e 9 Ind absorp 13986 oh 5.10 AL SUITA e attestation Quality ieur CTB-X (pplicatio	n correspor 430 kg/ t cup D µ ound transm acco	idence : DfI-si m ³ Dry cup 200 μ ission loss R c ording to the f	of a single wood of lowing equa and at a single ON	ound absor IAW Tal Ihermal con IAW Id-based pane tion (which is o urface mass >	Ption coe EN 13986 ble N°10 Pductivity EN 13986 el, measured only valid fc 5 kg/m ²): R R - EN 13986 n of Perform	fficient l in dB, is r the fre = 13 × lg 6 : 2004 ance ava	t 250 s related quency r (m _A) + 12 + A1 : 20 silable on	Hz to 500 0,10 the mean range of 1 k 4 n15 - EN 634 www.group lnformation substances risk of toxia n a scale go	harphi = 0,1 Hz surface r (Hz to 3 l 6-3 1 E1 be-thebau on the er within the city in cas ing from	1000 Hz àto 0,30 3 nass m _A en (Hz ult.com	of volat	
IAW EN Vapour perr IAW EN Table Airbone sou IAW EN Paragrap TECHNIC/ CE Structure	Flooring a Flooring a ic density 1789 meability 13986 e 9 ind absorp 13986 oh 5.10 AL SUIT, e attestation Quality	pplicatio	n correspor 430 kg/ t cup D µ ound transm acco	idence : DfI-si m ³ Dry cup 200 μ ission loss R c ording to the f	of a single woo following equa and at a si ON CON CON CON CON CON CON CON CON CON	ound absor IAW Tal Ihermal con IAW Id-based pane tion (which is o urface mass >	Ption coe EN 13986 ble N°10 Pductivity EN 13986 el, measured only valid fc 5 kg/m ²): R R - EN 13986 n of Perform	fficient in dB, is or the fre = 13 × lg 6 : 2004 ance ava	t 250 s related quency r (m _A) + 12 + A1 : 20 silable on	Hz to 500 0,10 the mean range of 1 k 4 015 - EN 630 www.group Information substances risk of toxic in a scale go t Sc	λ = 0,1 surface r (Hz to 3 l 6-3 1 E1 be-thebal on the er within the city in cas ing from o C (high enarios flo	1000 Hz àto 0,30 3 nass m _A en (Hz ult.com	of volat showing on, base emissio	

FT TEBOLAM - RE 25-V1-GB - Cancels and supersedes any previous versions - Document non contractuel - Création : info@com-en-ciel.com - Crédits photos : Groupe Thébault

HNICAL

PRECAUTIONS OF USE

All further working operations performed on the product after delivery which may modify the fire reaction classification are carried out under the liability of the buyer or of the end user.

The panels contain crystalline fire –resistant additives which may migrate to the surface and create chalky, powdery areas. This will not affect the mechanical or fire-resistance properties of the panels.

These additives will also increase the hygroscopicity of the panels.

Whatever type of surface finishing you wish to apply on to the plywood it is important to:

1- Stabilize the plywood in the atmosphere where they are to be used until they have reached their equilibrium moisture content.

2- Brush the panels in order to reduce, as far as possible, the presence of crystal on the surface

3- Conduct preliminary tests on samples with the surface coatings to be used to ensure that they are compatible with the plywood substrate. If necessary coordinate tests with the manufacturer of the surface finishing.

When the surface finishing requires an application with an adhesive, it is important to:

4- Stabilize the plywood in the atmosphere where they are to be used until they have reached their equilibrium moisture content.

5- Brush the panels in order to reduce, as far as possible, the presence of crystal on the surface.

6- Use sample pieces to carry out preliminary tests with the adhesive system, to ensure that the area of adherence is compatible with the plywood substrate. If necessary coordinate tests which the manufacturer of the adhesive.

Chalky, powdery areas may occasionally appear on the surface of the panels (even through coatings such as varnish, paint, veneer). This is caused by the panels' crystalline fire-resistant additives. This is a phenomenon which is inherent to the product. Therefore it may not be subject to the submission of a complaint by the buyer or the end – user.

The fire treatment applied to TEBOFLAM EXTERIEUR is obtained by mean of vacuum pressure treatment. The process may cause a warping or bowing phenomenon within the plan of the plywood which does not affect the intrinsic properties of the panel. The occurrence of such phenomenons may therefore not be subject to the submission of a complaint by the buyer or the end-user.